27 research outputs found

    How Wigner Functions Transform Under Symplectic Maps

    Full text link
    It is shown that, while Wigner and Liouville functions transform in an identical way under linear symplectic maps, in general they do not transform identically for nonlinear symplectic maps. Instead there are ``quantum corrections'' whose hbar tending to zero limit may be very complicated. Examples of the behavior of Wigner functions in this limit are given in order to examine to what extent the corresponding Liouville densities are recovered.Comment: 8 pages, 6 figures [RevTeX/epsfig, macro included]. To appear in Proceedings of the Advanced Beam Dynamics Workshop on Quantum Aspects of Beam Physics (Monterey, CA 1998

    Accurate Transfer Maps for Realistic Beamline Elements: Part I, Straight Elements

    Full text link
    The behavior of orbits in charged-particle beam transport systems, including both linear and circular accelerators as well as final focus sections and spectrometers, can depend sensitively on nonlinear fringe-field and high-order-multipole effects in the various beam-line elements. The inclusion of these effects requires a detailed and realistic model of the interior and fringe fields, including their high spatial derivatives. A collection of surface fitting methods has been developed for extracting this information accurately from 3-dimensional field data on a grid, as provided by various 3-dimensional finite-element field codes. Based on these realistic field models, Lie or other methods may be used to compute accurate design orbits and accurate transfer maps about these orbits. Part I of this work presents a treatment of straight-axis magnetic elements, while Part II will treat bending dipoles with large sagitta. An exactly-soluble but numerically challenging model field is used to provide a rigorous collection of performance benchmarks.Comment: Accepted to PRST-AB. Changes: minor figure modifications, reference added, typos corrected

    The Moyal-Lie Theory of Phase Space Quantum Mechanics

    Get PDF
    A Lie algebraic approach to the unitary transformations in Weyl quantization is discussed. This approach, being formally equivalent to the ⋆\star-quantization, is an extension of the classical Poisson-Lie formalism which can be used as an efficient tool in the quantum phase space transformation theory.Comment: 15 pages, no figures, to appear in J. Phys. A (2001

    Quantum logic gates for coupled superconducting phase qubits

    Full text link
    Based on a quantum analysis of two capacitively coupled current-biased Josephson junctions, we propose two fundamental two-qubit quantum logic gates. Each of these gates, when supplemented by single-qubit operations, is sufficient for universal quantum computation. Numerical solutions of the time-dependent Schroedinger equation demonstrate that these operations can be performed with good fidelity.Comment: 4 pages, 5 figures, revised for publicatio

    Multilevel effects in the Rabi oscillations of a Josephson phase qubit

    Full text link
    We present Rabi oscillation measurements of a Nb/AlOx/Nb dc superconducting quantum interference device (SQUID) phase qubit with a 100 um^2 area junction acquired over a range of microwave drive power and frequency detuning. Given the slightly anharmonic level structure of the device, several excited states play an important role in the qubit dynamics, particularly at high power. To investigate the effects of these levels, multiphoton Rabi oscillations were monitored by measuring the tunneling escape rate of the device to the voltage state, which is particularly sensitive to excited state population. We compare the observed oscillation frequencies with a simplified model constructed from the full phase qubit Hamiltonian and also compare time-dependent escape rate measurements with a more complete density-matrix simulation. Good quantitative agreement is found between the data and simulations, allowing us to identify a shift in resonance (analogous to the ac Stark effect), a suppression of the Rabi frequency, and leakage to the higher excited states.Comment: 14 pages, 9 figures; minor corrections, updated reference

    A Lie connection between Hamiltonian and Lagrangian optics

    No full text
    Introduction In Hamiltonian optics rays are described using the Hamiltonian H # ##n 2 # p 2 # 1#2 (1) The use of a Hamiltonian formulation is advantageous because Hamiltonian flows produce symplectic maps, and there is a well developed calculus, using both characteristic functions and Lie algebraic methods, for handling symplectic maps in an efficient and economical way [1, 2]. However, the use of a Hamiltonian approach has the consequence, perhaps at first surprising, that the map describing simple transit in a uniform medium (free flight in optical parlance, and a drift in accelerator parlance), is nonlinear. Therefore, in a Hamiltonian approach to optics, aberrations (nonlinearities) arise not only from transfer maps associated with lens interfaces, but also from simple transit within and between lenses. This circumstance is perhaps of les
    corecore